skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Ninan, Joe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present statistical results from the Epoch of Giant Planet Migration RV planet search program. This survey was designed to measure the occurrence rate of giant planets interior to the water ice line of young Sun-like stars, compare this to the prevalence of giant planets at older ages, and provide constraints on the timescale and dominant inward migration mechanism of giant planets. Our final sample amounts to 85 single young (20–200 Myr) G and K dwarfs that we target across a 4 yr time baseline with the near-infrared Habitable-zone Planet Finder spectrograph at McDonald Observatory’s Hobby-Eberly Telescope. As part of this survey, we discovered the young hot Jupiter HS Psc b. We characterize survey detection completeness with realistic injection-recovery tests and measure an occurrence rate of 1 . 9 1.4 + 2.6 % for intermediate-age giant planets ( 0.3 M J < m sin i < 13 M J ) within 2.5 au. This is lower than the field age occurrence rate for the same planet masses and separations and favors an increase in the prevalence of giant planets over time from ∼100 Myr to several Gyr, although our results cannot rule out a constant rate. A decaying planet occurrence rate is, however, strongly excluded. This suggests that giant planets located inside the water ice line originate from a combination of in situ formation or early migration coupled with longer-term inward scattering. The completeness-corrected prevalence of young hot Jupiters in our sample is 1 . 5 1.1 + 2.2 % —similar to the rate for field stars—and the 95% upper limit for young brown dwarfs within 5000 days is <3.6% . 
    more » « less
  2. Abstract We describe the discovery and characterization of TOI-7149 b, a 0.705 ± 0.075MJ, 1.18 ± 0.045RJgas giant on a ∼2.65 days period orbit transiting an M4V star with a mass of 0.344 ± 0.030Mand an effective temperature of 3363 ± 59 K. The planet was first discovered using NASA’s TESS mission, which we confirmed using a combination of ground-based photometry, radial velocities, and speckle imaging. The planet has one of the deepest transits of all known main-sequence planet hosts at ∼12% (Rp/R∼ 0.33). Pushing the bounds of previous discoveries of giant exoplanets around M-dwarf stars (GEMS), TOI-7149 is one of the lowest mass M-dwarfs to host a transiting giant planet. We compare the sample of transiting GEMS to stars within 200 pc with a Gaia color–magnitude diagram and find that the GEMS hosts are likely to be high metallicity stars. We also analyze the sample of transiting giant planets using the nonparametricMRExoframework to compare the bulk density of warm Jupiters across stellar masses. We confirm our previous result that transiting Jupiters around early M-dwarfs have similar masses and densities to warm Jupiters around FGK stars, and extend this to mid M-dwarfs, thereby suggesting a potential commonality in their formation mechanisms. 
    more » « less
  3. Abstract We report the discovery of a hot Jupiter candidate orbiting HS Psc, a K7 (≈0.7M) member of the ≈130 Myr AB Doradus moving group. Using radial velocities over 4 yr from the Habitable-zone Planet Finder spectrograph at the Hobby–Eberly Telescope, we find a periodic signal of P b = 3.986 0.003 + 0.044 days. A joint Keplerian and Gaussian process stellar activity model fit to the radial velocities yields a minimum mass of m p sin i = 1.5 0.4 + 0.6 MJup. The stellar rotation period is well constrained by the Transiting Exoplanet Survey Satellite light curve (Prot= 1.086 ± 0.003 days) and is not an integer harmonic nor alias of the orbital period, supporting the planetary nature of the observed periodicity. HS Psc b joins a small population of young, close-in giant planet candidates with robust age and mass constraints and demonstrates that giant planets can either migrate to their close-in orbital separations by 130 Myr or form in situ. Given its membership in a young moving group, HS Psc represents an excellent target for follow-up observations to characterize this young hot Jupiter further, refine its orbital properties, and search for additional planets in the system. 
    more » « less
  4. The search for Earth-like exoplanets with the Doppler radial velocity (RV) technique is an extremely challenging and multifaceted precision spectroscopy problem. Currently, one of the limiting instrumental factors in reaching the required long-term 10−10level of radial velocity precision is the defect-driven subpixel quantum efficiency (QE) variations in the large-format detector arrays used by precision echelle spectrographs. Tunable frequency comb calibration sources that can fully map the point spread function (PSF) across a spectrograph’s entire bandwidth are necessary for quantifying and correcting these detector artifacts. In this work, we demonstrate a combination of laser frequency and mode spacing control that allows full and deterministic tunability of a 30 GHz electro-optic comb together with its filter cavity. After supercontinuum generation, this gives access to any optical frequency across 700–1300 nm. Our specific implementation is intended for the comb deployed at the Habitable-Zone Planet Finder (HPF) spectrograph and its near-infrared Hawaii-2RG array, but the techniques apply to all laser frequency combs (LFCs) used for precision astronomical spectrograph calibration and other applications that require broadband tuning. 
    more » « less
  5. Abstract We present the discovery of GJ 251 c, a candidate super-Earth orbiting in the habitable zone (HZ) of its M dwarf host star. Using high-precision Habitable-zone Planet Finder and NEID RVs, in conjunction with archival RVs from the Keck I High Resolution Echelle Spectrometer, the Calar Alto High-resolution Search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrograph, and the Spectropolarimétre Infrarouge, we improve the measured parameters of the known planet, GJ 251 b (Pb= 14.2370 days; m sin ( i ) = 3.85 0.33 + 0.35 M), and we significantly constrain the minimum mass of GJ 251 c, placing it in a plausibly terrestrial regime (Pc= 53.647 ± 0.044 days; m sin i c = 3.84 ± 0.75M). Using activity mitigation techniques that leverage chromatic information content, we perform a color-dependent analysis of the system and a detailed comparison of more than 50 models that describe the nature of the planets and stellar activity in the system. Due to GJ 251’s proximity to Earth (5.5 pc), next generation, 30 meter class telescopes will likely be able to image terrestrial planets in GJ 251’s HZ. In fact, GJ 251 c is currently the best candidate for terrestrial, HZ planet imaging in the northern sky. 
    more » « less
  6. Abstract We present the discovery of TOI-6303b and TOI-6330b, two massive transiting super-Jupiters orbiting a M0 and a M2 dwarf star, respectively, as part of the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) survey. These were detected by NASA’s Transiting Exoplanet Survey Satellite and then confirmed via ground-based photometry and radial velocity observations with the Habitable-zone Planet Finder. TOI-6303b has a mass of 7.84 ± 0.31MJ, a radius of 1.03 ± 0.06RJ, and an orbital period of 9.485 days. TOI-6330b has a mass of 10.00 ± 0.31MJ, a radius of 0.97 ± 0.03RJ, and an orbital period of 6.850 days. We put these planets in the context of super-Jupiters around M dwarfs discovered from radial-velocity surveys, as well as recent discoveries from astrometry. These planets have masses that can be attributed to two dominant planet formation mechanisms—gravitational instability and core accretion. Their masses necessitate massive protoplanetary disks that should either be gravitationally unstable, i.e., forming through gravitational instability, or be among the most massive protoplanetary disks known to date to form objects through core accretion. We also discuss their possible migration mechanisms via their eccentricity distribution. 
    more » « less
  7. Abstract Brown dwarfs bridge the gap between stars and planets, providing valuable insight into both planetary and stellar-formation mechanisms. Yet the census of transiting brown-dwarf companions, in particular around M-dwarf stars, remains incomplete. We report the discovery of two transiting brown dwarfs around low-mass hosts using a combination of space- and ground-based photometry along with near-infrared radial velocities. We characterize TOI-5389Ab ( 68 . 0 2.2 + 2.2 M J ) and TOI-5610b ( 40 . 4 1.0 + 1.0 M J ), two moderately massive brown dwarfs orbiting early M-dwarf hosts (Teff = 3569 ± 59 K and 3618 ± 59 K, respectively). For TOI-5389Ab, the best fitting parameters are periodP = 10.40046 ± 0.00002 days, radius R BD = 0.82 4 0.031 + 0.033 RJ, and low eccentricity e = 0.096 2 0.0046 + 0.0027 . In particular, this constitutes one of the most extreme substellar-stellar companion-to-host mass ratios ofq= 0.150. For TOI-5610b, the best-fitting parameters are periodP = 7.95346 ± 0.00002 days, radius R BD = 0.88 7 0.031 + 0.031 RJ, and moderate eccentricity e = 0.35 4 0.012 + 0.011 . Both targets are expected to have shallow, but potentially observable, occultations: ≲500 ppm in the JohnsonKband. A statistical analysis of M-dwarf/BD systems reveals for the first time that those at short orbital periods (P < 13 days) exhibit a dearth of 13MJ < MBD < 40MJcompanions (q < 0.1) compared to those at slightly wider separations. 
    more » « less
  8. EX Lupi, a low-mass young stellar object, went into an accretion-driven outburst in 2022 March. The outburst caused a sudden phase change of ∼112° ± 5° in periodically oscillating multiband lightcurves. Our high-resolution spectra obtained with the High Resolution Spectrograph (HRS) on board the Southern African Large Telescope also revealed a consistent phase change in the periodically varying radial velocities (RVs), along with an increase in the RV amplitude of various emission lines. The phase change and increase in RV amplitude morphologically translates to a change in the azimuthal and latitudinal location of the accretion hotspot over the stellar surface, which indicates a reconfiguration of the accretion funnel geometry. Our three-dimensional magnetohydrodynamic simulations reproduce the phase change for EX Lupi. To explain the observations, we explored the possibility of forward shifting of the dipolar accretion funnel as well as the possibility of the emergence of a new accretion funnel. During the outburst, we also found evidence of the hotspot’s morphology extending azimuthally asymmetrically with a leading hot edge and cold tail along the stellar rotation. Further, our high-cadence photometry showed that the accretion flow has clumps. We also detected possible clumpy accretion events in the HRS spectra that showed episodically highly blueshifted wings in the CaiiIR triplet and Balmer H lines. 
    more » « less
  9. Abstract The LHS 1610 system consists of a nearby (d= 9.7 pc) M5 dwarf hosting a candidate brown dwarf companion in a 10.6 days, eccentric (e∼ 0.37) orbit. We confirm this brown dwarf designation and estimate its mass ( 49.5 3.5 + 4.3 MJup) and inclination (114.5° 10.0 + 7.4 ) by combining discovery radial velocities (RVs) from the Tillinghast Reflector Echelle Spectrograph and new RVs from the Habitable-zone Planet Finder with the available Gaia astrometric two-body solution. We highlight a discrepancy between the measurement of the eccentricity from the Gaia two-body solution (e= 0.52 ± 0.03) and the RV-only solution (e= 0.3702 ± 0.0003). We discuss possible reasons for this discrepancy, which can be further probed when the Gaia astrometric time series become available as part of Gaia Data Release 4. As a nearby mid-M star hosting a massive short-period companion with a well-characterized orbit, LHS 1610 b is a promising target to look for evidence of sub-Alfvénic interactions and/or auroral emission at optical and radio wavelengths. LHS 1610 has a flare rate (0.28 ± 0.07 flares per day) on the higher end for its rotation period (84 ± 8 days), similar to other mid-M dwarf systems such as Proxima Cen and YZ Ceti that have recent radio detections compatible with star–planet interactions. While available Transiting Exoplanet Survey Satellite photometry is insufficient to determine an orbital phase dependence of the flares, our complete orbital characterization of this system makes it attractive to probe star–companion interactions with additional photometric and radio observations. 
    more » « less